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Large-amplitude waves can exist on an air-water interface where the air is in steady 
non-uniform flow and the water is stationary. Computations of such waves are 
provided here, both for periodic nonlinear Stokes-like waves, and for a specific 
wave-making configuration in which the periodic solution appears tuii the downstream 
far field. The wavemaker geometry chosen here is relevant to the edge region of a 
hovercraft, and the large-amplitude free-surface disturbance caused by the escaping 
air is computed as a function of the Froude number based on air-jet velocity and 
thickness. 

1. Introduction 
If air is caused to move in a non-uniform manner above a water surface, that surface 

will deform under the action of the non-uniform aerodynamic pressure, whether or 
not the water moves. We consider here only those cams where the water remains at 
rest, or in which its motion can be neglected relative to that of the air. In  such cases, 
the equilibrium free-surface configuration represents a balance between aerodynamic 
and hydrostatic pressures. 

The boundary condition on the interface between air and water can be shown (Tuck 
1975) to be equivalent to that for moving water with a constant-pressure free surface. 
Some well-known water-wave solutions (e.g. deep-water Stokes waves, as computed 
by Schwartz 1974) can simply be turned upside down and re-interpreted as relevant 
to the present context. However, an interesting class of problems that does not have 
a direct water-wave analogue is that in which the air layer is of finite thickness, its 
upper boundary being a constant-speed free streamline. 
An example of such a flow is a vertically downward jet of air impinging upon the 

water surface, where it splits symmetrically and then spreads out over the surface, 
generating waves in the process. This problem was studied first by Olmstead & 
Raynor (1964), and more recently by Vanden-Broeck (1981). It is the purpose of the 
present paper to study another (unsymmetric) example of a generating mechanism, 
as well as to investigate in their own right the nonlinear waves that are generated. 

As an idealized model of the edge-seal zone of a hovercraft (see e.g. Trillo 1971 ; 
Tsel’nik 1982), or the trailing edge of an airfoil flying close above water (Tuck 1985; 
Grundy 1086), consider the steady irrotational flow sketched in figure 1. Air (assumed 
inviscid and incompressible) is caused to flow inward from infinity on the left, in a 
sink-like maner, in a sector region bounded by a plane wall and a static water surface. 
The air then pasaes through a gap beneath the lower edge of the wall and the water, 
and emerges on the right as a jet, that flows to infinity in a layer above the water 
surface. Neglect of air viscosity means that we are neglecting the developing 
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FIQURE 1.  Sketch of flow in the physical (z, y)-plane. 

boundary layers at the air-air and air-water interfaces, an assumption that can be 
expected to provide a reasonable approximation for rapid air flow not too far from 
the gap, before the layer breaks up. 

So long as the air layer does retain its identity, as it moves to the right, it generates 
an asymptotically periodic wave on the gravity-dominated air-water interface, and 
one of our tasks is to compute the amplitude of this wave, as a function of forcing 
parameters such as the net volume flux of air and the gap width. The wave is small 
only when the air flux is small, or, more precisely, when a suitable Froude number 
based on this flux is small. In the limit when this Froude number tends to zero, the 
water surface appears aa a rigid wall, and the air jet flows over that wall in a 
non-wave-like manner. This is a standard free-streamline problem, and the solution 
can be obtained easily in closed form by hodograph methods. 
Our generalization to finite Froude number allows the water surface to deform, and 

we reduce this problem to a nonlinear integral equation for the hodograph variables 
(velocity magnitude and direction) along the air-water free boundary. This integral 
equation is then solved numerically for various values of the Froude number and wall 
angle. 

As the Froude number increases from zero (in effect, as we blow harder relative 
to the available gap), the violence of the disturbance to the water surface increases, 
and the amplitude of the far-field waves increases. However, we find that, at least 
in theory, extremely steep waves can be generated, with amplitudes many times the 
gap width or the air-layer thickness. In  practice, such large free-surface deformations 
would suggest a break up in the form of spray, or detachment of the air jet from the 
water surface, as discussed by Tsel'nik (1982). 

In  order to throw more light on these large-amplitude waves, we also provide here 
an independent study of the far-field limit, i.e. of purely periodic plane waves on an 
interface between dynamic air and static water. For this purpose, a simple Fourier 
series representation of the solution is truncated to a finite number of terms, the 
coefficients of which are then found by collocation of the boundary condition. 

In  the limit where the air-layer thickness is far in excess of the wavelength, these 
waves are exactly the same as deep-water plane progressive (Stokes) waves, turned 
updde down. Such a 'deep-layer' wave has the usual maximum steepness (trough- 
to-crest height/wavelength) of about 0.141, and is limited by development of a 
stagnation point in a 120" angle, but at  the trough rather than the crest. However, 
finite air-layer thickness has the opposite effect to that of finite water depth on Stokes 
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waves, in that it allows the steepness to incream above 0.141. For large-to-moderate 
layer thicknesses, the limiting wave of maximum steepness still has a stagnation point 
at  the trough. However, for moderate-to-small layer thicknesses, the waves become 
so steep (amplitudes comparable to wavelength) that they are no longer so limited, 
but continue to steepen until the upper air surface self-intersects. Meanwhile, the 
air-layer thickness is becoming small relative to the wavelength, and a ‘ shallow-layer ’ 
theory equivalent to that used by Peregrine (1974) can be applied. 

2. Problem formulation 
We consider steady irrotational flow of (incompressible) air in a region whose only 

boundaries consist of a semi-infinite plane wall at  an angle R( 1 -01) to the horizontal, 
and a static water surface, as depicted in figure 1. To an observer in the upstream 
far field, the flow appears to be that generated by a sink, located in the gap between 
the bottom edge of the wall and the water. That is, the flow upstream is directed 
radially inward, and has a prescribed net volume flux +,. Consequently, stagnation 
conditions apply at  upstream infinity, and the water surface approaches its minimum 
height there. 

A t  the bottom edge of the wall, the air flow is assumed to detach smoothly, forming 
a jet lying above and in contact with the water, and subsequently extending to 
downstream infinity. The effect of gravity is neglected in this air jet, the pressure 
then being given by 

where p, is the stagnation pressure, pA is the density of air, and q is the magnitude 
of the air velocity. 

The upper surface of the jet is a free streamline, on which the pressure has the 
constant (atmospheric) value pA.  Thus, on this surface, q is constant and equal to 
U.  where 

(2.2) 

P = PO-+Aq2y (2.1) 

is known if the two pressures p,, p ,  are known. In the hovercraft application, p ,  -pA 
is the excess pressure induced by the hovercraft’s fans, and one output of interest is 
the manner in which p, decays to p A  dong the air stream. 

On the lower surface of the jet, the pressure in the air must equal that in the water, 
and the latter is hydrostatic, since we are assuming that the water does not move. 
Thus, on this air-water interface, we have 

P = P,--PwS(Y-Ys), (2.3) 

where pw is the density of water, g is the acceleration due to gravity, and y-ys is 
the free-surface elevation relative to the upstream stagnation level y = ys. The 
bottom edge of the wall is taken the origin y = . Equating (2.1) and (2.3) gives 

k2-sPw (Y-Ys) = 0 (2.4) 
PA 

as the free-surface condition on the (dynamic air)-(static water) interface. This is (cf. 
Tuck 1975) the same as for a constant-pressure surface of dynamic water turned 
upside down, with a negative effective gravity scaled by the density ratio. 

A quantity of particular interest is the ‘mean’ downstream water level y = yA, 
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which would occur 
pressure PA. Thus 

FIGURE 2. Flow domain inf-plane. 

in a hypothetical undisturbed stream of air a t  speed U and 

PA y* = ys+-- v. 
2PwS 

If the air flow did not induce any waves, the decrease in pressure from po to p ,  
would simply cause the water surface to rise monotonically from y = ys to y = yA. 
However, as we shall see, this does not happen, and the situation far downstream 
consists instead of a stream of air of speed close to U flowing over a water surface 
that is deformed into an aaymptotically periodic wave whose mean level is close to 
y = y,. It should be noted that yA could be either positive or negative, and that if 
it  is positive, the bottom edge of the wall dips beneath the mean water level. 

The coordinate system is now non-dimensionalized so that the incoming net volume 
flux $o and the flow velocity U on the upper air boundary are both scaled to unity. 
Our characteristic lengthscale is thus d = $o/U,  where d can be interpreted as the 
mean air-layer thickness. Equation (2.4) can now be rewritten in non-dimensional 
form as 

y = ys + p q a  9 (2.6) 

where here and subsequently, all coordinates such as y are scaled with respect to d, 
and all velocities such as q with respect to U .  The Froude number F is defined as 

and we shall also write y = F-a. 
We shall use the complex coordinate z = z+ iy and velocity potential f = q5 + i$, 

seeking an analytic function z = z(f). The streamline $ = 0 consists of the wall and 
the upper free surface of air, while the streamline $ = - 1 consists of the ail-water 
interface. The origin in both z- andf-planes is taken at the bottom edge of the wall. 
The flow region in the f-plane is a strip, as shown in figure 2. 

We now introduce the logarithmic hodograph variable 

dz D = 7-i8 = -1og- 
df’ 

where r = logq is zero on the upper free boundary $ = 0, q5 > 0, while 8 is the angle 
between streamlines and the z-axis, and takes the constant value --xu on the wall + = 0, Q < 0. On the aipwater interface $ = - 1, neither r nor 8 is given, but there 
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FIQURE 3. Flow domain in the <-plane. 
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is a relation between them, as follows. Upon differentiating (2.3), substituting q = eT, 
and using (2.6), we fmd 

e3'- = y sine, (2.9) 
a7 

a# 
6 

or, on integrating e37 = 3y J-m sin e dp, (2.10) 

The strip in thef-plane is mapped to the lower half-[-plane (see figure 3) using the 
transformation 

5 = ezf- 1 (2.11) 

and [ will be used temporarily as an independent variable in place off. The line 
segment CD in the f-plane representing the upper free boundary is mapped to the 
positive real axis. The upstream stagnation zone EA at infinity is mapped to the point 
( -  1 , O ) .  The segments DE and AB, representing the wall and the air-water interface 
respectively are mapped to the negative real axis, onto the intervals ( -  1 , O )  and 
(- a, - 1) respectively. 

At upstream infinity, we can write the leading-order sink-like flow behaviour as 

z + ein(1-a) [k e-nuf+c], #+-a, (2.12) 

where k and c are real constants which depend on the local flow details in the gap. 
Thus, as #+ - 0 0 ,  

51 + naf - log nak + ina. (2.13) 

It follows then from (2.11) and (2.13) that 51 is logarithmically singular at  g = - 1 .  
At downstream infinity, that is, as #-+ + co, or 151 + + 00, 51 is bounded. The real 
part of 51 is thus known on the positive real g-axis, and the form of the imaginary 
part is specified on the negative real C-axis (even if the exact details are not yet known 
on the air-water interface). This suggests that we should define a new variable 

X ( S )  = g - + a  (2.14) 

with the useful properties that the real part of x is specified, in the above sense, 
everywhere on the real axis, and that x - + O  as (g -++ 00. Also, since Q is bounded 
at 6 = 0, x(Q remains integrable there, and x([) can also be seen to be integrable at 
g = - 1 .  

15-2 
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Application of Cauchy's theorem to x in the lower half-plane then gives 

(2.15) 

for all 5 on the real axis. Expressions for n: and 8 on the negative real and positive 
real g-axes respectively can now be extracted by rewriting the left-hand side of (2.15) 
in terms of i2 and taking the real part of both sides. Thus 

and 

(2.16) 

(2.17) 

The logarithmic and arctan terms derive from the interval ( -  1, 0), on which 8( [ )  
is known and constant, and over which the integral in (2.15) can be evaluated 
analytically. In fact, if 8(g) =- 0 for g < - 1, these terms provide the exact solution 
(cf. Gilbarg 1960) when the air-water surface is replaced by a rigid wall. Note that 
the integral in (12.15) is of the Cauchy-principal-value type, and hence so is (2.16) 
if YE (- 00, - 1 )  ; that is, for points along the air-water interface. 

Equation (2.16) can be rewritten in the original $-variables on 11- = - 1, letting 
T = T($) and 8 = @($) on this streamline, to obtain 

It is clear that we can now combine (2.18) with (2.10), also rewritten in terms of $, 
by the elimination of T($) ,  to give a single nonlinear integral equation for our 
fundamental unknown @($), namely 

In $4 we derive a numerical scheme to determine the solution 8($) of the integral 
equation (2.19) for given y (i.e. given F) and u. 

Once @($) is known, 7 and 6' can be determined around the flow boundaries by 
substitution into (2.16) and (2.17). The physical coordinates z(f) then follow by 
integration of (2.8). 

3. Numerical Method 
The numerical scheme we shall follow is similar to that devised by Vanden-Broeck 

(1981), with the exception that we have used the integrated form of the aerodynamic 
hydrostatic free-surface condition (2.10) to eliminate T($) completely. 

We begin by replacing the infinite range of integration in (2.19) by a finite range 
[ A , B ] ,  where A is large and negative, and B is large and positive. Truncation 
corrections were implemented when necessary to account for the contributions from 
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$ < A and $ > B. We now partition the resulting interval [A, B] into N subintervals 
of equal width. The subinterval end points are thus 

$, = y+) j + A ,  j = O , l , 2  ,..., N ,  

at which e(q5j)=s,, j = o , 1 , 2  ). . . ,  N .  

We also need the N subinterval midpoints 

i =  1,2,  ..., N .  (3.3) 

We apply the trapezoidal rule to both the integrals in (2.19), using as nodes the 
N +  1 points where $ = 4,. Our aim is thus to write the integrals in (2.19) as 
summations involving the 8, as sole unknowns. We now seek to satisfy (2.19) at each 
of the N midpoints qbi-+, i = 1,2,  . . . , N. At a particular i, the first integral involves 
integration only up to the midpoint of the ith subinterval, thus requiring knowledge 
of 8(y,-+). Four-point Lagrange interpolation is used to rewrite this quantity in terms 
of 8,-,, 8,, @,+, and 8,+8. The second (Cauchy-principal-value) integral can be 
evaluated as if it were an ordinary integral, ignoring the singularity, owing to the 
symmetry of the discretization (cf. Monacella 1967). 

We now have a system of N nonlinear algebraic equations involving the N +  1 
unknowns 8,, i = 0, 1,2,  . . . , N. We reduce by one the number of unknowns by 
assuming that 8, = 0. That is, we assume that the interface is flat at the furthest 
upstream point $ = A, which is valid for sufficiently large IAI. A truncation 
correction, using the fact that 8($) decays like a multiple of e3=@ as $+- 00, was 
necessary for computation at small a. However, simply setting 8, = 0 was adequate 
for most values of IAl used. Downstream, use of a truncation correction at $, = B, 
was found to be necessary for large values of F i.e. F > 3, and the crude approximation, 
8 = 8, for $ > B, WM adequate. 

The final system of N equations in N unknowns is solved using Newton’s method, 
and an apparently unique solution is found at each F and a. In most cases, the 
rigid-ground solution (8 E 0) is a useful initial guess for the Newton scheme. 
Whenever this is not true, converged solutions at  one value of F can be used as initial 
guesses for computations at nearby F-values. At fixed F, it is also possible to vary 
a, using the previous converged solutions at nearby values of a as initial guesses. For 
any sensible starting guesses, convergence of Newton’s method to five- or six-figure 
accuracy is obtained within 7 iterations, 

At fixed grid size, we vary the positions of $, = A and $, = B until the results 
in the region of interest are independent of their position. The discretization error 
can then be decreased further by decreasing the grid size (i.e. by increasing N), at 
fixed A and B, until the required accuracy is obtained. Close to three-figure accuracy 
can be attained with a grid size of 0.2 (for example with A = - 5  and N = 100). 

In  most cases we wish to compute at least one, and preferably two, complete 
downstream waves. This forces 4, = B further downstream than is dictated by 
truncation-error considerations. At high values of F, for example F > 3, where the 
wavelength in terms of 9 is also large, large numbers of points must be used to 
compute even one complete wave. 

Once a converged solution for 8($) is obtained, the actual shapes of both the 
air-water interface @ = - 1 and the upper free streamline @ = 0 are each easily 
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FIGURE 4. Physical-plane profile for the vertical-wall case, a = 0.5. The ‘mean’ downstream 
water level y = yA is shown dashed. (a) F = 1 ; (b )  2; (c) 3. 
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FIQURE 5. Plot of steepness aa a function of F for the vertical wall. 

computed separately, by numerical integration of (2.8). Their relative positions, 
however, depend on two constants of integration which are directly related to the 
values of k and c in (2.12). The value of k follows (see (2.13)) from the constant term 
in the asymptotic expansion as #+-a of T(+) in (2.18). Once k is found, c is found 
by integration of (2.8) up the rigid wall, and comparison with (2.12). The x and y 
constants of integration follow immediately. 

4. Computed results 
Figure 4(a-c) shows some physical-plane profiles for various values of F, for the 

vertical-wall caae a = 0.5. Typically, near-stagnation conditions are observed within 
two or three air-layer widths in the sink-like flow upstream of the wall. Downstream, 
the standing waves supported by the air-layer become periodic very quickly. The first 
wave differs in size from subsequent waves by less than one percent. 

Figures 5 , 6 ,  and 7 show the dependence on F of the wave steepness, wavelength, 
and downstream mean level respectively. In the limit as F tends to zero, both 
steepness and wavelength tend to zero. That is, for small F (and the results in figure 
4 (a) suggest that F = 1 is small enough), the waves become aaymptotically sinusoidal, 
and ultimately disappear as F tends to zero. In this (rigid-ground) limit, the mean 
level y A  shown in figure 7 approaches the constant value - (n + 2)/n, i.e. the negative 
reciprocal of the contraction coefficient for jet flow from a hole. The present 
computations in fact suggest that the steepness tends to zero extremely rapidly with 
F,  so much 80 that there is an apparent discontinuity in the curve of figure 5 at about 
F = 0.6, the computed steepness being less than 0.001 for F < 0.5, say. However, 
the ability of our program to compute detailed features of such tiny waves is open 
to question. 

As F increases (see figure 4b, c )  the waves beoome larger, and noticeably nonlinear, 
developing broad cresfs and troughs, with steep sides. Accompanying this increase 
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FIQURE 6. Plot of wavelength aa a function of F for the vertical wall. The corresponding 
linearized result (see (5.3)) is shown dashed. 
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-2t 
function of F, for th FIGUEE 7. Plot of ‘mean’ downstream water level yA as vertical wall. 

in wave size is a monotonic increase in yA. In  fact, yA becomes positive around 
P = 2.2, meaning that for F above this value the wall actually dips below the mean 
water level. The line y = yA is shown dashed on each of figure 4(a-c). There is no 
evidence to suggest that our computations are at all limited to y, < 0. 

Beyond F = 2.2, figure 5 shows that the steepness of the waves increase8 wi tbut  
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FIGWE 8. Comparison of preesure distributions for the vertical well at F = 0, 1 and 3. 
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FIGURE 9. Physical-plane profile at P = 2 for (a) a 45' wall (a = 0.25); and (b)  a 1 3 6 O  war1 
(a = 0.75). 
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FIGURE 10. Plot of steepness aa a function of wall angle parameter a, at P = 2. 

apparent bound. Figure 6, on the other hand shows that the wavelength reaches a 
maximum, near F = 3. The wave formed appears not to be limited, as Stokes waves 
are, by the development of a stagnation point at the trough. This behaviour is 
examined in $5, where the whole family of waves, to which these belong, is discussed 
in detail. 

Figure 8 shows the pressure distribution on the free-surface at various F,  including 
the ‘rigid-ground’ pressure distribution at F = 0. Such results are of some importance 
for the application to hovercraft and, for example, empirical smoothing of the 
otherwise step-like variation between p ,  and p ,  has been used to compute hovercraft 
wave resistance (e.g. by Tatinclaux 1976). 

So far we have only considered the situation in which F is varied at fixed a, namely 
a = 0.5. We now fix F at a representative value, F = 2, and let the wall-angle 
parameter a vary between 0 and 1.  Figures 9 (a and b) show physical-plane profiles 
at a = 0.25 and 0.75 respectively. We observe that the position and size of the 
downstream waves varies very little over this wide range of wall angles. In  fact, as 
a is decreased from unity (see figure lo), there is only a slight decrease in wave 
steepness until a=0.2.  Below this value, however, there is a rapid decrease in 
steepness and a strong suggestion that this quantity tends to zero as a+O, i.e. as 
the flow changes from a sink to a channel-like uniform stream at upstream infinity. 

The flow in this limit is of particular interest for application to the trailing edge 
of an an airfoil in ‘ground’ effect over water (Tuck 1985 ; Grundy 1986). In this limit, 
at any Froude number, there is a possible trivial solution in which the flow continues 
as a uniform stream, with flat undisturbed free surfaces. As to whether there is also 
a non-trivial solution, the answer from the present program as a+O appears to be 
no, although conclusive results cannot be obtained for extremely low values of a, i.e. 
for a < 0.005. 

For these small values of a, the velocity tends to zero slowly upstream, and it 
becomes necessary to greatly increase IAI, as well as implementing the truncation 
correction mentioned previously. The number of grid points required becomes 
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FIQURE 11. Sketch of flow in physical-plane for half of a periodic wave. 

prohibitive for a < 0.005. In fact, (2.19) fails to hold for uniform stream conditions 
at  upstream infinity, since T(q5) tends to a constant, and not minus infinity as in the 
present positive-a problem. Thus, it is no surprise that computation becomes difficult 
as a tends to zero. 

5. The far-field periodic wave 
Figure 11 shows a, half-wavelength segment of the flow far downstream, which is 

assumed to have reached an asymptotically periodic state. If K is the ‘wavenumber’ 
in the (q5, $)-plane, this segment can be assumed to extend from a trough at  q5 = 0 
to a crest at q5 = X / K .  Note that we retain the non-dimensional system used earlier 
(apart from shifting the origin to a trough) so that K is scaled by the reciprocal of 
the net flux $,, of air. 

Consider now the series representation (cf. Chen & Saffman 1980) 

I 0 = E c, sin ( j ~ q 5 )  cosh (j~$), 
J-1 

I 00 

7 = E c, cos ( j ~ q 5 )  sinh (j~$). 
,-I 

These series defme conjugate harmonic functions that are periodic, period Z X / K ,  
with respect to q5. For any choice of the real coefficients c,, they satisfy r = 0 on 
$ = 0, and 0 = 0 at both q5 = 0 and q5 = X / K .  Only the nonlinear free-surface 
condition (7) on $ = - 1 remains to be satisfied, by appropriate choice of c,. This 
condition can be written 

a7 
aq5 

E(q5) = e3T--y sin0 = 0. (5.2) 

A simple collocation numericd procedure is then immediately available, in which 
the series (5.1) are truncated to N terms, and the error E(q5) defined by (5.2) is forced 
to vanish at N equally spaced points in 0 < q5 < X / K .  This gives N nonlinear algebraic 
equations in N unknown coefficients c,, j = 1, . . . , N ,  which are easily solved by 
Newton iteration. 
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FIGURE 12. Plot of wavelength of periodic waves against steepness, for various values of the Froude 
number F.  Results from the far-field of the hovercraft problem are shown dashed. Dots show 
estimated highest waves. 

The linearized version of the above problem requires only the first term j = 1 of 
the series (5.1), with c1 (and hence both 0 and 7 )  small. Then (5.2) demands that 

7 = K tanh K +  o ( c t ) ,  (5.3) 

a result that  was obtained by Vanden-Broeck (1981). The present nonlinear problem 
is similar to  that for classical Stokes waves, as reviewed by Schwartz & Fenton 
(1982). I n  fact, the ‘deep-water’ limit K+ co is identical with Stokes waves turned 
upside-down (cf. Tuck 1975). However, for any finite value of K, the 7 = 0 boundary 
condition a t  the upper air boundary is conjugate with that (0 = 0) used on the bottom 
for finite-depth Stokes waves, and, for example, the equivalent linearized result to 
(5.3) for such waves would involve ‘coth’ instead of ‘tanh’. 

The present program was first checked for very large 7 and K (with Y / K  finite) 
against deep-water Stokes-wave results of Schwartz (1974). No serious attempt was 
made to  approach the almost-highest type of wave, with steepness 0.141, but a 
moderately high steepness of 0.12 was achieved with N = 40 points a t  
~ / ~ = 0 . 8 6 8 2 2 6 ,  the computed wave speed being 1.07321 times the speed of a 
linearized wave of the same (true) wavelength, which compares very well with 
Schwartz’s result of 1.07323. 

Note that, although the ‘wavelength’ in the #-variable is ~ R / K  in the present 
formulation, the true physical-plane wavelength is as much an output quantity as 
is the wave height and profile. These quantities are in fact obtained by direct 
numerical integration with respect to #, as described earlier. For finite K, we also 
integrate with respect to  q5 to obtain the profile of the upper air boundary. 

Figure 12 is a compilation of results computed for periodic waves using the method 
of the present section, together with output from the far field of the hovercraft-type 
flows treated earlier. This figure provides plots of wavelength versus steepness, 
parametrized by the Froude number. At any fixed F (or 7)-value, we compute a 
sequence of flows for increasing steepness, by varying the input parameter K from 
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FIQURE 13. Computed profiles of periodic waves at (a )  F = 1 ; ( b )  2; (c) 4. 
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the value at  zero steepness given by solving (5.3). For F below about 3, as K increases, 
the steepness increases, non-linearity becomes more significant, and more terms in 
the series (5.1) are needed. For P above about 3, K decreases with steepness. In either 
case, as the steepness increases, accuracy is eventually lost, and, with N = 40, we can 
only get to within about 90% of the steepest wave using the present simple 
truncated-series procedure. However, a continuation is shown in figure 12 to a dot 
near where it is reasonable to believe the steepest wave will occur at each value 
of F. 

Figure 12 also includes (dashed) results from the previous section, for the actual 
waves produced in the hovercraft-type flow. At each F, the points in the ‘ (steepness- 
wavelength) ’-plane computed in this flow fall very accurately on the appropriate 
curve computed using the methods of the present section, confirming that the 
‘far-field waves’ have reached a periodic steady state. A curve similar to the dashed 
curve can be constructed for any wave-making disturbance, e.g. for the vertically 
downward jet of Olmstead & Raynor (1964). 

In  classical water-wave theory, the steepest wave is always that with a stagnation 
point at the crest, where the angle is 120’. The present corresponding ‘upside-down’ 
wave would have a stagnation point at the trough, and this does indeed appear to 
be the limiting behaviour, providing F is below about 3. In contrast to the effect of 
finite depth on classical water waves, which tends to reduce the maximum steepness 
below the infinite-depth value 0.141 which occurs at F = 0, in the present case the 
maximum steepness is increased by finite-F effects. The air jet thus appears to allow 
larger waves than could exist on a stream with no such jet. 

This phenomenon is displayed even more dramatically at higher Froude numbers, 
F > 3, when it appears that development of a trough stagnation point is no longer 
a limiting factor, and (at least computationally) there appears to be no limit at  all 
on steepness. However, the results eventually become physically unrealistic, at  
steepnesses of about 1.8, since the upper air free surface becomes self-intersecting. 

Figure 13 (a-c) provides examples of computed free-surface shapes. At  the lowest 
Froude number shown (F = 1 on figure 13a) the air layer is quite thick, and the upper 
air boundary has a minor effect on the air-water interface. Thus the latter behaves 
like an upside-down classical wave in water of infinite depth. The two curves shown 
are for a small steepness, where the wave is quite sinusoidal, and a near-maximum 
steepness, where the trough is starting to sharpen toward a 120° angle. The actual 
steepness of this wave (0.150) is already a little greater than the classical value for 
infinite-depth Stokes waves. Similarly, figure 13(b) shows a small and a near- 
maximum steepness at F = 2. Finally, figure 13(c) at F = 4 shows results at three 
steepnesses, the greatest of which is just beyond the physically realizable limit, i.e. 
has a self-intersecting upper free surface. 

The waves in figure 13(c) have layer thicknesses that are quite small relative to 
the wavelength, and it is possible to describe their properties in terms of a 
‘shallow-layer ’ theory analogous to the shallow-water theory of water waves. Much 
of the research, such as that of Tsel’nik (1982), on edge-seal effects for hovercraft, 
makes such shallow-layer or thin-jet assumptions. For periodic waves, a shallow-layer 
theory has been given in an equivalent context by Peregrine (1974), and the profiles 
in figure 13(c) agree with the cnoidal waves obtained by Peregrine. 
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